
— —

~ - r

~~~~~~~~

~~ ~~~~~ \\

UNIVERSITY OF MARYLAND
$ COMPU TER SCIENCE CENTER

COLLEGE PARK, MARYLAND
20742

~~~ public ~~~~~~ ç~~~79 11 8 O o~~



~~~
-- 

~~~~~~~~~~~~~~~~~~~~~~~~

1. Introduction

Region representation is an important issue in image pro-

cessing , cartography , and computer graphics. There are numer-

ous representations currently in use (see [DRS] for a brief

review). In this paper we present an algorithm for obtaining

the quadtree representation [Klinger] given the row-by-row

description of a binary image. Such an algorithm is useful

because each representation is well—suited for a set of oper-

ations or may be desirable for its compactness . For example,

the row—by—row representation is especially useful for inter-

action with raster-like display devices since input and out-

put requires very little additional computation . In addition ,

it is also a useful technique when memory size limitations

preclude storing in core an array corresponding to the image

(e.g., [Samet4]). On the other hand , the quadtree is a com-

pact hierarchical representation , thereby facilitating search .

In the remainder of this section we briefly define the

representations used. Sections 2—5 present and analyze our

algorithm . Included is a formal description of the algorithm

in addition to a rationale for its various steps. The formal

presentation of the algorithm is made using a variant of

ALGOL 60 [Naur].

Assume that the image is a 2~ by 2n array . Each row of the image

is thus a bit string of length 2~~ . The quadtree is an approach

to image representation based on successive subdivision of the

image into quadrants. In essence, we repeatedly subdivide the

-~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~
—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~. -~ ~~~~~~~~~~~ -~~



~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ 
— :.

array into quadrants, subquadrants,... until we obtain blocks

• (possibly single pixels) which consist entirely of either

l’s or 0’s. This process is represented by a tree of out—

degree 4 in which the root node represents the entire array ,

the four sons of the root node represent the quadrants , and

the terminal nodes correspond to those blocks of the array
a

for which no further subdivision is necessary. For example ,

Figure lb is a block decomposition of the region in Figure

la while Figure lc is the corresponding quadtree . In general ,

BLACK and WHITE square nodes represent blocks consisting entirely

of l’s and 0’s respectively . Circular nodes , also termed GRAY

nodes, denote non-terminal nodes.

j DDC~~~B I~l IH ~ IJ t i f j ,t ~~~

• •:~~~~~~~ j~ C ~~
~~~ -

~~ ~- iJ/orsp ec~a1Ln~LL~



2. Definitions and Notation

Let each node in a quadtree be stored as a record containing

six fields. The first five fields contain pointers to the

node’s father and its four sons, labeled NW, NE, SE, and SW.

Given a node P and a son I, these fields are referenced as

FATHER(P) and SON (P,I) respectively. At times it is useful

to use the function SONTYPE(P) where SONTYPE (P)=Q if f

SON (FATHER(P),Q)=P . The sixth field , named NODETYPE , describes

the contents of the block of the image which the node repre-

sents--i.e., WHITE if the block contains no l’s, BLACK if the

block contains only l’s, and GRAY if it contains 0’s and l’s.

Alternatively, BLACK and WHITE are terminal nodes while GRAY

nodes are non-terminal nodes.

Let the four sides of a node ’s block be called its N , E,

S, and W sides. They are also termed its boundaries . The

spatial relationships between the various sides are specified

by use of the functions OPSIDE and CCSIDE. OPSIDE(B) is a side

facing side B; e.g., OPSIDE(E)=W . CCSIDE(B) corresponds to the

side adjacent to side B in the clockwise direction ; e.g.,

CCSIDE(E) N. We also define the following predicates and

functions to facilitate the expression of operations involving

a block ’s quadrants and boundaries. ADJ(B,I) is true if and

only if quadrant I is adjacent to boundary B of the node ’s

block ; e.g., ADJ (N,NW) is true. REFLECT(B ,I) yields the

______________________— —~~~~
.—-

~~~~.——— —~~-—-~~-—- ~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~ • - 

- - 
• •

~~~


- -~~~~- - --• - -,-• .-•T- --
~

--
~~~~~~~~

-
~T : - ~~~’- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

• 

~- - -
~~~~~~~~~~~~~

-

~~~~~~~~-~~~~~
-

V

quadrant which is adjacent to quadrant I along boundary B

of the block represented by I; e.g., REFLECT(N ,NE)=SE ,

REFLECT (E,NE) NW, REFLECT(S,NE) SE, and REFLECT (W,NE)=NW.

• QUAD(B,C) is the quadrant which is bounded by boundaries B

and C (if B and C are non—adjacent boundaries , then the value

of QUAD(B,C) is undefined); e.g., QUAD (N,E)=NE. OPQUAD(Q) is

the quadrant which is non-adjacent to quadrant Q; e.g.,

OPQUAD (NE)=SW, OPQUAD(SE)=NW , OPQUAD(SW)=NE, and OPQUAD(NW)=SE .

Figure 2 shows the relationship between the quadrants of a

node and its boundaries.

Given a quadtree corresponding to a 2~ by 2~ array we say

that the root is at level n, and that a node at level i is

at a distance of n—i from the root of the tree. In other

words, for a node at level i, we must ascend n—i FATHER links

to reach the root of the tree. Note that the farthest node from

the root of the tree is at level �Ø. A node at level 0 cor-

responds to a single pixel in the image .



~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -

V

3. Aigorithm

The key to the raster—to-quadtree algorithm is that at

any instant of time (i.e., af ter each pixel in a row has

been processed), a valid quadtree exists with all unprocessed

pixels presumed to be WHITE. Thus as the quadtree is built ,

nodes are merged to yield maximal blocks. This is in contrast

to an algorithm which first builds a complete quadtree with

one node per pixel and then attempts to merge--i.e., replace

all GRAY nodes with four sons of the same color by a node of

the same color. The disadvantage of the complete quadtree

method is that it requires more space. In particular , for a

2n by 2n image , 22n BLACK and WHITE nodes may be required in

addition to 4 22n non-terminal GRAY nodes. This is clearly

undesirable when compared with a maximum of 22n bits required

by the binary array representation. Note that a hybrid method

was used in [Sameti] to construct a quadtree from the boundary

code of the image—-i.e., the first pass left a number of links

unspecified while the second pass filled in the links and

attempted to merge the resulting nodes .

The given binary image is assumed to be partitioned into

rows. Clearly, no odd-numbered row can lead to a merge of nodes

unless it is the last row. Thus odd-numbered rows don ’t

require as much processing as even-numbered rows. Assume that

the image contains an even number of rows. If the image

--.-—- -.~-p-- ~~~~~~~~~~ -~ -.. - 
—

~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~ —


- ~~~~~~~~~~~~~~~ ~~~~~~~~ -~ — — ~~~~~~~~~~~~~~~~~~~~~~

‘ I
I

contains an odd number of rows, then it is presumed that one

extra row of WHITE has been added.

For an odd—numbered row, the tree is constructed by pro-

cessing the row from left to right adding a node to the tree

for each pixel. For example , Fig. 3a through 3i shows the

construction of a quadtree corresponding to the first four

pixels of the binary image of Fig. la (i.e., pixels 1, 2, 3 ,

and 4). This is done by invoking a procedure called FIND

NEIGHBOR . As the quadtree is constructed , non-terminal nodes

must also be added . Since we wish to have a valid quadtree

after processing each pixel , whenever we add a non—terminal

node we also add, as is appropriate , three or four WHITE nodes

as its remaining Sons.

More formally , finding a neighbor of a node in a specified

direction consists of traversing FATHER links until a common

ancestor is found. Once the ancestor is found , we descend

along a path that is reflected about the axis formed by the

common boundary between the two nodes. If a common ancestor

does not exist, then a non-terminal node is added with its

three remaining sons being WHITE (e.g., Fig. 3c and 3f). Once

the common ancestor and its three sons have been added , we once

again descend along a path reflected about the axis formed by

the boundary of the node whose neighbor we seek . Dur ing thi s

descent , a WHITE node is converted to a GRAY node and f our

—~
--
~i.__ ~~~~~~~~~~~~~~~~~~~~~~~

——

~

-•- --• —

4,

WHITE Sons are added (e.g., Fig. 3g). As a final step, the

terminal node is colored appropriately (e.g., Fig. 3d and 3h).

In the example , Fig. 3a, 3b-3d, 3e—3h , and 3i are snapshots

of the quadtree construction process for the nodes correspond—

ing to pixels 1, 2, 3, and 4 respectively of Fig. la.

Even—numbered rows require more work since merging may

also take place. In particular , a check for a possible merge

must be performed at every even numbered vertical position

(i.e., every even—numbered pixel in a row). Once a merge

occurs , we may have to check if another merge is possible.

In particular, for pixel position (a21,b2~) where a mod 2 =

b mod 2 = 1, a maximum of k=min(i,j) merges is possible . For

example, at pixel 60 of Fig. la, i.e., position (8,4), a max-

imum of 2 merges is possible and indeed this is how block E of

Fig. lb has been obtained. The fact that merging does take

place causes an additional amount of bookkeeping . In parti-

cular , we wish to maintain the position in the tree where the

next pixel is to be added as well as the next row . Prior to

attempting a merge, a node corresponding to the next pixel

in the image is added to the quadtree (e.g., node 11 is added

to the quadtree in Fig. 4 prior to attempting to merge nodes

1, 2, 9, and 10 of Fig. la). Similarly, we precede the pro—

cessing of each even-numbered row by adding to the quadtree

a node corresponding to the first pixel in the next row

~~~~~~~--- --•--~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



ics

4,

(e.g., the addition of node 33 to the tree of Fig. 5 prior

• to processing row 4 of Fig. la). This type of lookahead was

also employed for different reasons in the perimeter comput-

ation and connected component labeling algorithms [Samet2 ,

Samet3].

As an example of the application of the algorithm , consider

the image given in Figure la. Figure lb is the corresponding

block decomposition and Figure ic is its quadtree represen-

tation . All of the nodes that are a result of merging have

been labeled with letters (i.e., A through I) and the alpha-

betical order corresponds to the order in which the merged

nodes were created . Figures 3a through 31 show the steps in

the construction of the quadtree corresponding to the first

part of the first row. Figures 6 and 7 show the resulting

tree after the first and second rows have been processed .

The following ALGOL—like procedures specify the algorithm .

The main procedure is called QUADTREE and is invoked with a

pointer to the first row. QUADTREE controls the construction

of the quadtree by invoking procedures ODDROW and EVENROW to

add odd-numbered and even-numbered rows respectively to the

tree. This is facilitated by the use of procedures FIND

NEIGHBOR and CREATENODE to locate neighboring nodes and creation

of nodes for pixels which have no corresponding node in the tree .

Procedure MERGE is responsible for replacing any GRAY node

having four sons of the same color by a node of the same color. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


•
-

~~~~~~~~

- 
- 

- -
~~~~~~~~~~~~

-r ~~~~~~~~~~~~~~~ rT~~~~~~~~~ ~~~~~~~~~~~~~~~~ 2~~~~~ ~~~~~~~~~~~~~~~~~~~

1’

COLOR is a function that converts the pixel’s boolean value

to the appropriate color (e.g., BLACK and WHITE for 1 and 0

respectively).

I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~
—•
~~~~~~~~~~ -- — --~~~~~-~~ ~~~~~~-•-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - --- — —-- • -,


node procedure QUADTREE(P ,WIDTH) ;

/* build a quadtree corresponding to the image whose binary

representation is contained in a list of rows , WIDTH pixels

wide , pointed at by P */

beg in
4

list P;

Boolean array Q [1:WIDTH];

node FIRST;

integer I ;

• ODDROW (Q ÷ GETROW (P) , FIRST÷CREATENOD E (N U LL ,NUL L ,Q[l 1) ,WIDTH) ;

P~-N E X T (P) ;

F IRST4-EVENROW (NULL (N E X T (P)) ,GETROW (P) ,F IN D NE IG H B O R (FI R S T , ‘ S ’) ,

I*-2 ,WIDTH) ;

while not N U L L (P ÷ N E X T (P)) do 7* assume an even number of rows */

begin

ODDROW (GETROW (P) ,FIRST , WIDTH) ;

P 4-N EXT (P) ;

FIRST-~-EVENROW (NULL (NEXT (P)),GE TROW (P) ,

FIND NEIGHBOR (FIRST , ‘S ’) , I+I÷2 ,WID TH) ;

end ;

while not NULL (FATHER(FIRST)) do FIRST4-FATHER(FIRST) ;

return(FIRST); /*return the root of the quadtree *1

~~I~~j
• •

—• - - - - - - - -~~~ ~~~•.“—.-~~~..-- ~~~~~~~~~~~ • - - ______

: ~~~~~~~~~~~~~~~

-
, ~~~

—
~~~~~~~~~~

- --

•~ - .

~:

4,

procedure ODDROW (Q,R,W)

/* add the odd-numbered row of width W represented by Q to a
quadtree whose node R corresponds to the first pixel in

the row ~~
/

begin

integer W,I;

Boolean array Q [l:W];

node R;

NODETYPE(R)+CQLOR (Q[l));

for 1÷2 step 1 until W do

begin

R-~-FIND NEIGHBOR(R, ‘E’);

NODETYPE (R) +COLOR (Q[I]);

end;

end;

• 
-~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~



— T~~~~~. 
- 

~~~~~~~ 
-

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~ - 
-

~~~~~~

node procedure EVENROW(LASTROW ,Q,FIRST,I,W);

• /* add even numbered row I of width W represented by Q to a

quadtree whose node FIRST corresponds to the first pixel in

the row. During this process, merges of nodes having four

Sons of the same color are performed . LASTROW indicates if

row I is the last row in the image */

~~ begin

integer I,J,W;

Boolean array Q [1:W];

node FIRST ,P,R,T;

Boolean LASTROW;

P÷FIRST;

if not LASTROW then /*remember the first node of the next row

FIRST÷FIND NEIGHBOR(P , ‘S’);

for J-~-l step 1 until W-1 do

begin

R-4-FIND NEIGHBOR(P, ‘E’);

NODETYPE(P)÷COLOR~Q [J]);

if J mod 2=0 then MERGE(I,J,FATHER(P));

end ;

NODETYPE(P)÷COLOR(Q [W]); /* don ’t invoke FIND_NEIGHBOR for

last pixel in a row ~~~
/

if W mod 2~O then T÷MERGE (I,W,FATHER (P));

return (if LASTROW then T

else FIRST) ;

—•---- —•-—~~--- --~---.--- -- ~~~~~~ ~~ ~~~~~~~~~~
_

~~~~~~~~ —.J~~~•_ ___~__ • 
--



node procedure FIND NEIGHBOR(Q,S);

/* return a node P which is adjacent to side S of node Q.

This is done by finding a common ancestor of the two nodes

and creating one if it does not exist. Whenever a common

-
~~~ ancestor or other nodes are created, all created sons are

set to WHITE. They are later reset to GRAY or BLACK as

appropriate *1

begin

node P ,Q;

side S;

g~uadrant I;

if NULL(SONTYPE(Q)) then /* common ancestor does not exist */

begin

P÷CREATENODE (NULL ,NULL,GRAY) ; /*create a common ancestor ~~
/

SONTYPE(Q)-~-QUAD (CCSIDE(S) ,OPSIDE(S));

SON(P,SONTYPE(Q))-~-Q;

FATHER(Q)+P;

/* create three sons ~~~
/

CREATENODE (P,OPQUAD (SONTYPE (Q)) ,WHITE);

CREATENODE(P ,OPQUAD (REFLECT(S,SONTYPE(Q)) ,WHITE);

return (CREATENODE(P ,REFLECT(S,SONTYPE(Q)) ,WHITE));

end

else if ADJ(S,SONTYPE(Q)) then P4-FIND NEIGHBOR(FATHER(Q) ,S)

else P+FATHER(Q);

/* trace a path from the common ancestor to the adjacent node

creating WH ITE sons and relabeling non-terminal nodes

to GRAY as necessary */

~~~~~~~~~ ~~~~~~•--~~~~~~~~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ -~ ~~~~~~~~~~~~~~~~~~~~~~~ -



,~~~~~~— -~: ~~~~~~~~~~~~~~~ -- . - -
~~~~

if NULL (SON (P ,REFLECT (S ,SONTYPE (Q)))) then

• begin

NODET YPE (P)~-GRAY ;

for I in {NW ,NE ,SW ,SE} do CREATENODE (P ,I,WHITE) ;

re turn (SON(P ,REFLECT (S ,SONTYPE (Q)))) ;

V

node procedure CREATENODE (ROOT, S , T);

/* create a node P with color T which corresponds to son S

of node ROOT and return P */

begin

node P ,ROOT;

quadrant I,S;

Boolean T ;

P4-GETNODE 0;

if ROOT then SON(ROOT,S)÷P; /* created node has a father *1

SONTYPE (P)-~-S;

FATHER (P) 4-ROOT;

NODETYPE (P) -4-COLOR (T);

for I in {NW ,NE,SW,SE} do SON(P,I)÷NULL;

return (P);

end ;

_ _ _ _ _ _-—--—— -I~~~~~~~~~-- - - - ~~~~~~~ ~:- ~~~—=~

— — •—~— - —

“~~~~~~~~~~~~~~~~~~~~~~
—--------

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -— -
~
---

~~~

V

4. Analysis

The running time of the quadtree construction process is

measured by the number of nodes that are visited . Thus we

only need to analyze the amount of time used by procedures

FIND_NEIGHBOR and MERGE. In our analysis we assume that the

image is a 2n by 2n array of pixels. We first prove the

following lemma:

Lemma 1: The number of nodes visited by FIND_NEIGHBOR is

bounded by 4 times the number of pixels.

Proof: For each row in the image , FIND NEIGHBOR is invoked

2n_1 times to find a neighbor in the eastern direction . 20

of the nodes corresponding to the pixels in each row have their

nearest common ancestor at level n , 21 at level n—l ,. . . ,2’ at
level n—i , and 2 1

~~ at level 1. There are 2n rows which invoke

FIND_NEIGHBOR in the easterly direction. In addition ,

each row invokes FIND_NEIGHBOR once, for the first column,

in the southerly direction. Once again , 20 of the

nodes corresponding to the pixels in the f irst column have

their nearest common ancestor at level n , 21 at level n-l ,...,

21 at level n-i, and 2 h1
~~ at level 1. Therefore, the total

number of nodes visited by FIND_NEIGHBOR in locating a common

ancestor is obtained as follows:

n . n •

(2n~.l) E ~~2
n—1

= (2n~1)2fl ~
1=1 i=l 21

n . n-i .1 1

i=l 21
= 2i=0 ~~~

-~-~~-—---- - —-
~~
--—

--
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~ ~~ - 
-. —

~ ;

n-l . n-il r 1 ~~~ 1
— L~ —,-

2i ..O 21 2i=0 2’

1
1n—l ~. 1 l—~~

L 2i=l 2’ 2 l-4

n
~~~~~2jl  2~

• 2n 2nk
g

n
1 n+2

• 
~ —~- = 2 — —-——

“ i=1 2’

(2n~1)2n1 ~ 1 
= (22n÷2n) (2_ ~~±.a)

i=l 2 2n

= 22~~
1 

+ 2n+l _2n (n+2)_ (n+2)

= 22r~
+l_n21

~ — (n+2)

< 2~”~~

Once a common ancestor has been found, FIND_NEIGHBOR must

descend an equal number of links in order to locate the neigh-

bor. Thus FIND_NEIGHBOR will visit a maximum of 22M2 nodes.

However, the image, being a 2n by 2n array , contains 22n pixels

and thus FIND_NEIGHBOR will visit a number of nodes bounded

by 4 times the number of pixels.

Q.E.D.

- As noted earlier, merging is only attempted at specified

grid positions. An upper bound on the number of nodes checked

for merging is attained when all of the pixels are of the same

color. This leads to the following lemma:

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ —--• ----- •- -- - -—


—
~~~~~~~~~~~~~~~ - 4 ~~

-‘:
~ --~~~ !:—~ T -~ -‘

I!
Lemma 2: The number of nodes examined for merging is bounded

by the number of pixels.

Proof: Each time a merge is attempted , we are at a node cor-

responding to a pixel position (a21,b23) where a mod 2 = b mod 2

= 1. Letting k = min(i,j), we see that k=l implies that three
additional nodes must be visited and checked if they are of

the same color as the node at pixel position (a21,b2~ ). If

k>l, and if the node corresponding to pixel position (a2’,b23)

has the same color as the nodes in pixel positions (a211b2~ -l),

(a2’—l,b2~ ), and (a2
1
~-l,b2

3—l ), then we reapply the test to the

three nodes which are neighbors of the merged node , etc. For

a 21l by 2~ image there are 22n1_2pixels such that k=1, 22~~
4

pixels such that k=2,... 22n-2e pixels such that k=~ , and 2
0

pixels such that k=n. Therefore the maximum number of nodes

that can be visited by MERGE is obtained as follows:

Z 3~22z~~2k = 3 2 2n ~ 1

k=l k=l 4

~~

= 2 2

Q.E.D.

We now come to the main result:

Theorem: The quadtree can be constructed from a sequence of

rows in time proportional to the number of pixels.

- __

~~~~~~J ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ i4•__
~

’. ~~~ ~~—- — ---—-- —- ~~~~~~~~~~~~~~~~~~~~ -~~-

. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

—

V

Proof: From Lemma 1, the maximum number of nodes visited by

procedure FIND_NEIGHBOR is bounded by four times the number

1
of pixels. From Lemma 2 the maximum number of nodes visited

by the merging process is bounded by the number of pixels.

Thus the maximum number of nodes that are visited is bounded

F by five times the number of pixels. -

Q.E.D.


~~~~~~~~~~~ -

5. Concluding Remarks

An algorithm has been presented for converting a row-by-row

representation of a binary image into a quadtree representation

of the image. The algorithm ’s execution time has been shown

to have a time complexity proportional to the number of pixels

in the image. The algorithm is also spacewise efficient in

that merging is attempted whenever possible. Thus after pro—

cessing each pixe l in a row , the resulting quadtree contains

a minimal number of nodes.

The algorithm is one-dimensional in the sense that it pro-

cesses the image a row at a time. Thus it can be used in con-

junction wi th the run length representation [RK] which views

each row as a sequence of maximal runs of pixels having the

same value. A row is thus completely determined by specifying

the lengths of these runs and the value of the first run . When

only a few runs are present, this representation is very eco-

nomical. For example, consider the image in Fig . la. Its

run length coding is B4l21, W2141, W53 , W53 , W422 , W422 , W8 , W8

where commas serve as separators between rows.

The algorithm can be contrasted with two other approaches .

If sufficient memory is available to store the array in core,

then the technique of [Samot4] which only creates nodes cor-

responding to maximal blocks, and hence requires no merging ,

should be used. Atternatively, we could attempt to find max-

imal blocks by processing several rows at once (e.g., 2m



f r

consecutive rows with runs of length �2m at the NW-most corner

of the image yield a block of size 2m) The disadvantage of
II

such an approach is that it requires searching and a substantial

amoung of bookkeeping as the rows are being processed . Instead ,

we have found maximal blocks by merging at appropriate pixel

positions.

I.



I,

6. References

[DRS] C. R. Dyer, A . Rosenf eld , and H. Samet. Region
representation: boundary codes from quadtrees ,
Computer Science TR-732, University of Maryland ,
College Park, Maryland , February 1979.

[Klinger] A. Klinger and C. R. Dyer, Experiments in picture
representation using regular decomposition , Computer
Graphics and Image Processing 5, 1976 , 68—105.

[Naur] P. Naur (Ed.), Revised report on the algorithmic
language ALGOL 60, Communications of the ACM 3,
1960, 299—314.

[RK) A. Rosenfeld and A . C. Kak, Digital Picture
Processing, Academic Press, New York , 1976.

[Sameti) H. Samet, Region representation: quadtrees from
boundary codes, Computer Science TR-74l, University
of Maryland , College Park , Maryland , March l979r.~ 

—

[Samet2l H. Samet, Computing perimeters of images represented
by guadtrees, Computer Science TR-755, University of
Maryland , College Park , Maryland , April 1979.

[Samet3] H. Samet, Connected component labeling using quadtrees ,
Computer Science TR—756 , University of Maryland ,
College Park, Maryland , April 1979.

[Samet4) H. Samet, Region representation : quadtrees from
binary arrays , Computer Science TR-767 , University
of Maryland , College Park , Maryland , May 1979.

—

~

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .•- -~-~--. - - - -


- -.-- - -

-- -
~~
- -

~~~~~
--—.-

4,

41~ iiiE1i
9’ iLl 11 12 13 1~4 15 16 _____ 112 2 13 14 15116

— 
• 

— - 
- — — —

B C

33 34 35 36 37 32 39 40 F G
_ _ [_ _  -~~~~~~~~~~~~-~~

49 50 5152 53 54 55 56

—~~ — — — -  I _ _
a. Sample image. b. Block decomposition of the

image in (a).

E

A B C  D F G H I

3 4 1 1 1 2  5 6 1 3 1 4 7 8 1 5 1 6 2 12229 3)

c. Quadtree representation of the blocks in (b).

F ig ure 1.  An image , its maxi mal b locks , and the corresponding
quadtree . Blocks in the i mage are shaded .



N

T~~NE1
~SW SE~

S

Figure 2. Relat ionShiP between a block ’ s four quadrants and its
boundaries .

• 
NW~~~~~~~~~~~S E NW4W S

(a) (b) (c )  (d)

Mk4W~~
N

~ 
~~~~~~SW~~~~~ N~~~~~S~~~~~~

1 2 1 2 1 2
(e) (f) (g)

NE SW E NE SW
E

~~4 NE S S~ r*i NE SW S NW N SW S NW NE SW SE

1 2 3 1 2 3~~
(h) (

~
)

Figure 3. Intermediate trees in the process of obtaining a quadtree
for the fi rs t part of the fi rst row in Figure la.

—----- -
~~~~ 

-

4,

1 2 9 i 0 3 4 f l  5 6  7 8
Figure 4. Quadtree prior to merging nodes 1 , 2 , 9, and 10.



::~
-“--

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ 

- 
--- - 

~~~~~
—-- - - - -

-

c~

ç

\

: 1 !

_ _ _ _ _ _ _ _ _


~~~
- 

______

~~~~~~~~~~
. _

~
— — —

1’

1 2 3 4 5 6 7 8

Figure 6. Quadtree after processing the fi rst row in Figure la.

A

FIgure 7. Quadtree after processing the second row in Fi gure la.

~~~~~~~~~~~~ - - — ~~~~~~~~~~~~~~~~~~~~~



Unr! I~~ss if 1 t~ri
SL~~URITY CLA SSIF ICATION OF THIS  PAGE (When Data Entered)

DED”
~~
’. 

~~~~~~~~~~~~~~~~ 
D A I E READ INSTRUCTI ONS

J~~ ~~1j I% I u’J~..um (~~ I I~~I UJI~ F
~~~
‘-

~ BEFORE COMPLETING FORM
V I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RE CIP i ENT’ S  C A T A L O G  NUMBER

4. T ITLE (and Subtitle) 5. TYPE OF REPORT 6 PERIOD COVERED

REGION REPRESENTATION: RASTER-TO- Technical
QUADTREE CONVERSION _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

6. PERFORMING ORG. REPORT NUMBER
TR—766 /

7. AUTHOR(a) 8. CONTRACT OR GRANT NUMB~~R(a)

Hanan Samet DAAG-53-76C-0138

9. PERFORMING ORGANIZAT ION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT , T A SK

4 Computer Science Department’ AREA 6 WORK UNIT NUMBERS

University of Maryland
College Park , MD 20742

II. CONTROLLING OFFICE NAME AND ADO~~ESS 12. REPORT DATE
U. S. Army Night Vision Laboratory Ma 1979Fort Belvoir , VA 22060 

~ NU MB ER OF PAG ES

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
30

IC. MONITORING AGENCY NAME 6 AD DRESS( II dIII. r.nt from Controlling Off ice) IS. S E C U R I T Y  CLASS.  (of thu report)

Unclassified

IS.. DEC L A S S I F I C A T I O N / O O W N G R A D I N G
SCHEDULE

16. DISTRIBUTION STATEMENT (of thu Report)

approved for public release; distribution unlimited .

17. DISTRIBUTION STATEMENT (of th. abat rac i .nt .,.d in Block 20, If different from Report)

19. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on revere. aide II neceeaary and identify by block number)

Pattern recognition
Image processing
Region representation
Quadtrees

20. A B ST RACT (Continu, on reverie aide if nec.ae.ty and identity by block number)

An algorithm is presented for constructing a quadtree for a binary
image given its row-by-row description. The algorithm processes the
image one row at a time and merges identically colored sons as soon
as possible so that a minimal size quadtree exists a f te r  processing
each pixel. This method is spacewise superior to one which reads in
an entire array and then attempts to build the quadtree . Analysis
of the algorithm reveals that its execution time is proportional to
the number of pixels comprising the image .

DD 
~~~~~~ 

1473 LOITION OF ‘ NOV SS IS O.SOL ETE
Unclassif ied

SECU RITY CLASSI F ICATION OF T HI S P A G E (W hen bat. Entered)

- - -~~~~~~~~~~
.- -.

~~~~~~~~~~
-- -- --~~~~~~~ -. --- ----——-.---- -. -.--.--— -~~~~~~~~~~~~~~~~~~~~~~~~~~~

-- --
~~~~- - -~~—- -  -


